Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation.

نویسندگان

  • Chiu-Yueh Hung
  • Longjiang Fan
  • Farooqahmed S Kittur
  • Kehan Sun
  • Jie Qiu
  • She Tang
  • Bronwyn M Holliday
  • Bingguang Xiao
  • Kent O Burkey
  • Lowell P Bush
  • Mark A Conkling
  • Sanja Roje
  • Jiahua Xie
چکیده

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methylenetetrahydrofolate Reductase in Nicotine N-Demethylation1[C][W][OA]

Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707 (C.-Y.H., F.S.K., B.M.H., J.X.); Department of Agronomy, Zhejiang University, Hangzhou 310029, China (L.F., J.Q., S.T.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (K.S., S.R.); Yunnan...

متن کامل

Biotechnological Reduction of Tobacco (Nicotiana Tabacum L.) Toxicity

BACKGROUND: Nicotiana tobacco contains large amounts of alkaloid nicotine. Tobacco plant is used for smoking and causes many health problems since it is high in nicotine which is one of the widely-recognized toxic compounds with serious side effects for different body organs. Reducing nicotine content of this plant is a way to reduce its health hazards in cigarette smokers. Utilizing the new ...

متن کامل

Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase.

Nornicotine is a secondary tobacco alkaloid that is produced by the N-demethylation of nicotine. Nornicotine production and accumulation in tobacco are undesirable because nornicotine serves as the precursor in the synthesis of the well characterized carcinogen N'-nitrosonornicotine during the curing and processing of tobacco. Although nornicotine is typically a minor alkaloid in tobacco plants...

متن کامل

Optimizing plant traits to increase yield quality and quantity in tobacco using artificial neural network

There are complex inter- and intra-relations between regressors (independent variables) andyield quantity (W) and quality (Q) in tobacco. For instance, nitrogen (N) increases W butdecreases Q; starch harms Q but soluble sugars promote it. The balance between (optimizationof) regressors is needed for simultaneous increase in W and Q components [higher potassium(K), medium nicotine and lower chlo...

متن کامل

Association between the A1298C Polymorphism of the Methylenetetrahydrofolate Reductase Gene and Recurrent Spontaneous Abortion

Introduction: A factor known to cause thrombophilia in women with recurrent pregnancy loss (RPL) is the A1298C polymorphism of methylenetetrahydrofolate reductase gene (MTHFR). This study aimed to determine the association between RPL and this polymorphism in Iranian patients. Methods: In this case-control study, 30 patients with a previous history of two or more consecutive unexplained abortio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 161 2  شماره 

صفحات  -

تاریخ انتشار 2013